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Abstract
The potentials for a one-dimensional Schrödinger equation that are displaced
along the x-axis under second-order Darboux transformations, called 2-SUSY
invariant, are characterized in terms of a differential–difference equation. The
solutions of the Schrödinger equation with such potentials are given analytically
for any value of the energy. The method is illustrated by a two-soliton potential.
It is proved that a particular case of the periodic Lamé–Ince potential is 2-SUSY
invariant. Both Bloch solutions of the corresponding Schrödinger equation are
found for any value of the energy. A simple analytic expression for a family of
two-gap potentials is derived.

PACS numbers: 03.65.Ge, 03.65.Fd, 03.65.Ca

1. Introduction

Originally, it was noted in the context of periodic potentials [1, 2] that transformed
Hamiltonians under special Darboux transformations are displaced with respect to the initial
potential by half a period. Later on, this effect was studied in more detail with respect to first-
order Darboux transformations (also called 1-SUSY transformations) [3, 4]. It was shown that
the range of possible displacements produced by a Darboux transformation is not restricted to
half a period, but can take on values in a set of (in general) complex values called ‘Darboux
displacements’ (or SUSY displacements). The potentials allowing such displacement are
called translationally invariant under the Darboux transformation or, simply, 1-SUSY invariant.
It was proved that a real-valued even potential function V0(x) = V0(−x) is 1-SUSY invariant
if and only if it is of the form V0(x) = 2℘(x + ω′), where ℘(x) = ℘(x, g2, g3) is the standard
Weierstrass elliptic function with real and imaginary half-periods ω and ω′ and invariants g2, g3

[5] (including its degenerate forms such as 2x−2, −2 cosh−2 x and 2 sinh−2 x). This result
3 On leave from Physics Department of Tomsk State University, 634050 Tomsk, Russia.
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really means that the family of 1-SUSY invariant potentials is rather sparse. Moreover, it was
noted in [3] that a simple displacement appears to be a ‘frustrated case’ of the Darboux method.
Nevertheless, this property has led to mathematically nontrivial results and to unexpected link
between the theory of elliptic functions and supersymmetric quantum mechanics [3, 4]. From
a physical point of view a very remarkable property of 1-SUSY invariant potentials is that
the corresponding Bloch solutions can be found analytically for any value of the energy. If
a linear combination of Bloch solutions is used as the transformation function for a simple
SUSY transformation, it produces an exactly solvable potential with locally perturbed periodic
structure. We believe these potentials could find applications in describing contact effects in
crystals, or modelling crystals with embedded inclusions.

In this paper we continue the investigation of SUSY invariant potentials, but at the level
of second-order Darboux transformations. The aim of this work is to study what happens
if a potential is assumed to be 2-SUSY invariant, i.e., a second Darboux transformation
results only in a displacement V0(x) → V2(x) = V0(x + d). From the very beginning it
is clear that this condition is weaker than 1-SUSY invariance, since any 1-SUSY invariant
potential is obviously also 2-SUSY invariant. Actually, as a preliminary result shows [4], the
family of 2-SUSY invariant potentials is richer than that of 1-SUSY invariant ones; at least, it
includes a class of 2-soliton potentials which are not 1-SUSY invariant. Indeed, as we show
below, it is even much richer, since a simple Darboux transformation over such a potential
gives another 2-SUSY invariant potential which cannot be reduced to a displaced copy of the
initial one. Another remarkable property of a 2-SUSY invariant potential is that it allows
for an analytic representation of both linearly independent solutions of the corresponding
Schrödinger equation at any value of the energy (not necessarily from the spectral set). Using
this property we are also able to generate new exactly solvable potentials with locally distorted
periodic structure, as illustrated below. Our results lead us to hypothesize that the general
Lamé–Ince potential is invariant under an nth order Darboux transformation.

This paper is organized as follows. In the next section we review several properties of
Darboux transformations and 1-SUSY invariant potentials. In section 3 we prove necessary
and sufficient conditions for a potential V0(x) to be 2-SUSY invariant and point out some
simple implications of this property. Section 4 has purely illustrative character. Here we apply
the results of the previous section to a well-studied family of 2-soliton potentials. Section 5 is
devoted to an analysis of the n = 2 case of the Lamé–Ince potential V0(x) = n(n+1)℘ (x+ω′).
It should be mentioned that this remarkable potential has attracted much attention from
mathematicians as well as physicists. Without going into further details we refer the interested
reader to the excellent recent papers [6] where a vast literature is summarized. We believe
that our general results applied to the n = 2 case establish new properties of this remarkable
potential. In particular, we show that it is 2-SUSY invariant and give a simple analytic
representation of its linearly independent Bloch solutions in terms of the Weierstrass functions.
Further we give an explicit formula for one-parameter family of two-gap (i.e. having only
two finite forbidden and allowed bands) potentials. General properties of such potentials
have been studied by algebraic–geometrical methods (see e.g. [6, 7]). The most striking of
our developments is that we use only elementary means and the well-known properties of
Weierstrass functions presented in [5].

2. Preliminaries

Darboux transformations (also known as SUSY-QM transformations) have become an
important tool for dealing with spectral problems associated with the Schrödinger equation,
especially in one spatial dimension. Though the basic procedure is quite simple, the method
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has attracted increasing attention from mathematicians and physicists for more than a century
(see e.g. [8, 9]).

One begins with a Hamiltonian

h0 = −∂2 + V0(x) ∂ ≡ d/dx x ∈ R (2.1)

(in appropriate units) whose eigenspace is two-dimensional for any eigenvalue a ∈ C:

h0u(a, x) = au(a, x) h0ũ(a, x) = aũ(a, x). (2.2)

As is well known, imposition of boundary, summability or Bloch-type constraints selects
‘physical’ solutions ψ(E, x) and leads to physical interpretation of the eigenvalue E as a
spectral parameter:

h0ψ(E, x) = Eψ(E, x) E ∈ R. (2.3)

If u1 ≡ u(a1, x) is a real and nodeless solution of equation (2.2), then the 1-SUSY partner
Hamiltonian

h1 = −∂2 + V1(x) V1(x) = V0(x) − 2(ln u1)
′′ (2.4)

(the prime denotes the derivative with respect to x) is isospectral with h0. (For non-periodic
V0(x) the spectrum of h1 may change in one point, but we ignore this for the moment.)
Furthermore, an intertwining operator L obeying Lh0 = h1L has the form

L = −∂ + (log u1)
′. (2.5)

Thus, the eigenfunctions of h1 for eigenvalue a �= a1 are v(a, x) = Lu(a, x), h1v(a, x) =
av(a, x). This procedure can be repeated by starting with h1 to produce a second isospectral
Hamiltonian h2 = −∂2 + V2(x), etc. It can be shown that in this way, for fixed u1

and u2 ≡ u(a2, x), the transformed potential is expressed in terms of the Wronskian
W(x) ≡ W(u1, u2) = u1u

′
2 − u′

1u2 as

V2(x) = V0(x) − 2[log W(x)]′′. (2.6)

For a �= a1, a2 the eigenfunctions of h2 are v(a, x) = W(u1, u2, u)W−1(u1, u2), h2v(a, x) =
av(a, x) where u ≡ u(a, x). It is easy to see that W(u1, u2, ũ1,2) ∝ u2,1 so that for a = a1, a2,
up to an inessential constant factor, this formula gives

v1,2 ≡ v1,2(a1,2, x) = u2,1W
−1(u1, u2) h2v1,2 = a1,2v1,2. (2.7)

We note that this is a particular case of a much more general result for a chain of N Darboux
transformations [9]. Solutions of the initial Schrödinger equation uj ≡ uj (aj , x) are called
transformation functions while their eigenvalues aj are known as factorization constants. We
refer the reader to [9] for more details.

A particularly interesting case is where V0 is periodic:

V0(x + T ) = V0(x). (2.8)

We recall that inside the eigenfunction space of each eigenvalue for such a Hamiltonian we
can build up Bloch functions, i.e., two linearly independent solutions u± of h0u

± = au± such
that

u±(a, x + T ) = [β(a)]±1u±(a, x) β(a) ∈ C. (2.9)

When for a = E one has |β(E)| = 1, the E-values belong to a spectral band and the
corresponding (‘physical’) solutions are bounded, while for |β(a)| �= 1 they are unbounded
(‘non-physical’) and the values of a lay in forbidden bands (see e.g. [10]). By using appropriate
Bloch functions as transformation functions in the Darboux algorithm one can construct
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periodic partner Hamiltonians [1–4, 11]. A linear combination of Bloch functions leads to a
perturbed periodic structure which is asymptotically periodic.

Let, for instance, the transformation functions be Bloch functions u+
1(x) and u−

2 (x) with
corresponding factors β1,2 = β(a1,2) as defined in (2.9). Then, according to (2.7), Bloch
solutions of the transformed equation corresponding to eigenvalues a1 and a2 are respectively

v−
1 = u−

2

W(x)
v+

2 = u+
1

W(x)
h2v

±
1,2 = a1,2v

±
1,2 (2.10)

where

v−
1 (x + T ) = β−1

1 v−
1 (x) v+

2 (x + T ) = β2v
+
2 (x). (2.11)

If under a Darboux transformation we have

V1(x) = V0(x + d) (2.12)

then d is called a Darboux displacement and V0 is said to be 1-SUSY invariant. The first cases
of Darboux displacements were found for periodic potentials [1, 2]. Later it was proved [3]
that an even function V0(x) allows for a first-order Darboux displacement if and only if it
satisfies the nonlinear differential–difference equation

V0(x) + V0(x + d) − 1

2

[
V ′

0(x) + V ′
0(x + d)

V0(x) − V0(x + d)

]2

= const (2.13)

which, up to a constant, is equivalent to the addition formula for the Weierstrass ℘ function.
This result means that the family of even 1-SUSY invariant potentials is restricted to the ℘

function and its degenerate forms, such as one-soliton potentials. In the next section we
prove necessary and sufficient conditions for a potential V0 to admit a displacement under a
second-order Darboux transformation. The potentials possessing this property will be called
2-SUSY invariant.

3. Second-order Darboux displacements

Let, as before, u+
1(x) and u−

2 (x) be two Bloch eigenfunctions of h0 which are chosen as
transformation functions for a 2-SUSY transformation. Although we concentrate on the case
of periodic potentials V0(x + T ) = V0(x), our results have a more general character, as will
be mentioned below. Now we assume that the potential V2, obtained according to (2.6), is
displaced from the original one, i.e.,

V2(x) = V0(x + d). (3.1)

Thus, the differential equations corresponding to h0 and h2 have exactly the same solutions,
but shifted by the displacement d. Hence, taking into account property (2.11) we see that

v−
1 (x − d) ∝ u−

1 (x) v+
2 (x − d) ∝ u+

2(x). (3.2)

From this and (2.10) it follows readily that

W(x) = c1
u−

2 (x)

u−
1 (x + d)

= c2
u+

1(x)

u+
2(x + d)

(3.3)

where c1,2 are constants. It is convenient to use the notation

x̃ = x + d �(x) = 1/W(x) p(x) = −2[ln �(x)]′. (3.4)

Therefore, p′(x) = V0(x) − V0(x̃) and from (3.3) it follows that

u−
1 (x̃) = c�(x)u−

2 (x) (3.5)
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where c is an inessential non-zero constant. After taking the second derivative of (3.5) and
using (2.2), one obtains

[V0(x̃) − a1]�(x)u−
2 (x) = [V0(x) − a2]�(x)u−

2 (x) + u−
2 (x)�′′(x) + 2[u−

2 (x)]
′
�′(x). (3.6)

Now, from (3.4) one has

�′ = −p

2
� �′′ = −p′

2
� +

p2

4
� (3.7)

and from (3.6) this yields

[ln u−
2 (x)]′ = p′

2p
+

p

4
+

a1 − a2

p
. (3.8)

Similarly

[
ln u+

1(x)
]′ = p′

2p
+

p

4
− a1 − a2

p
(3.9)

[
ln u+

2(x̃)
]′ = p′

2p
− p

4
− a1 − a2

p
(3.10)

[ln u−
1 (x̃)]′ = p′

2p
− p

4
+

a1 − a2

p
. (3.11)

Remark 1. Formulae (3.8)–(3.11) illustrate one of the most remarkable properties of a
2-SUSY invariant potential. The four Bloch functions corresponding to the eigenvalues a1

and a2 producing a displacement are expressible only in terms of the potential difference
p′(x) = V0(x) − V0(x + d) (a known function) and its primitive (also known from
equation (3.19)).

Later on for a particular case of the Weierstrass potential we will integrate these equations to
get analytic expressions for the solutions of the Schrödinger equation.

We turn next to finding necessary and sufficient conditions for V0(x) to admit a
displacement under a second-order Darboux transformation (shortly second-order Darboux
displacement).

Proposition 1. The Hamiltonian h0 allows for a second-order Darboux displacement if and
only if the potential V0(x) satisfies the following differential–difference equation:

T − 1

4

[
T ′

M

]2

= constant (3.12)

where

T = (S ′/D)2 + 4S − 2D′′/D M = D − (S ′/D)′ (3.13)

and

S = V0(x) + V0(x̃) D = V0(x) − V0(x̃). (3.14)

Note that this formula resembles (2.13) for the first-order displacement, but the functions T
and M involved depend in a much more complex way on V0(x).

Proof. Since u′′ = [(u′/u)′ + (u′/u)2]u, the Schrödinger equation for u−
2 is[

(u−
2 )

′

u2

]′
+

[
(u−

2 )
′

u2

]2

+ a2 − V0(x) = 0 (3.15)
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which together with (3.8) results in

2pp′′ − (p′)2 + 1
4p4 + 4(a1 − a2)

2 + 2p2(a1 + a2 − S) = 0 (3.16)

where S is defined in (3.14). Now we take the derivative of (3.16) and, since p′ = V0(x) −
V0(x + d) is a known function, we can treat the result as a quadratic equation for p, whose
solution is

p = S ′

p′ ±
√(

S ′

p′

)2

− 2
p′′′

p′ + 4S − 4(a1 + a2). (3.17)

Then taking the derivative of (3.17), and rearranging, we obtain the nonlinear differential–
difference equation for V0(x)

4(a1 + a2) = T − 1

4

[
T ′

D − (S ′/D)′

]2

(3.18)

where T is defined by (3.13). Keeping in mind that the eigenvalues a1 and a2 are independent
of x and taking into consideration the definition of M (second formula in (3.13)), we see that
the necessary condition is fulfilled. We shall show now that this condition is also sufficient.

First, we note that by using (3.18) to eliminate a1 + a2 in (3.17) we find

p = S ′

D
+

1

2

T ′

D − (S ′/D)′
. (3.19)

Here we have to choose only plus sign in (3.17) since it is easy to see that the minus contradicts
the condition p′ = V0(x) − V0(x + d). If the right-hand side of (3.18) is constant, then from
(3.19) we obtain p which, by retracing our steps, satisfies (3.16) which is equivalent to the
Schrödinger equation (3.15) for u−

2 . Therefore, from (3.8) and (3.9), we have the logarithmic
derivatives of u−

2 and u+
1 . These being known, we are able to calculate the second logarithmic

derivative of their Wronskian

[ ln W ]′′ = (a1 − a2)

[
ln

(
u+

1u
−
2

)]′[
ln

(
u+

1

/
u−

2

)]′ −
(

a1 − a2[
ln

(
u+

1

/
u−

2

)]′

)2

= 1

2
D (3.20)

which by (2.6) means that h0 possesses a second-order Darboux displacement. �

Corollary 1. Any 2-SUSY invariant potential allowing a set of displacements d generates a
one-parameter family of 2-SUSY invariant potentials (some of them may have singular points)
obtained by a 1-SUSY transformation with one of the four functions u±

1 , u±
2 as transformation

function.

Proof. Let V0(x) be 2-SUSY invariant. This means that there exists a second-order Darboux
transformation with transformation functions u−

1 and u+
2 which results only in a displacement of

the transformed potential V2(x) = V0(x+d). Any second-order transformation may be factored
into two successive first-order transformations. One can realize the first transformation with
the transformation function u−

1 to get an intermediate potential V1(x) which cannot be obtained
by a displacement of V0(x) if the later is not 1-SUSY invariant and hence V1(x) is essentially
different of V0(x). We shall show that V1(x) allows for the same second-order Darboux
displacement. In order to show this property take the logarithms of the first equality in (3.3)

2 log W(x) + 2 log u−
1 (x + d) = 2 log c1 + 2 log u−

2 (x).

After taking two derivatives and using (2.6) and (3.1) we obtain

V0(x) − 2[log u−
2 (x)]′′ = V0(x + d) − 2[log u−

1 (x + d)]′′. (3.21)
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The left-hand side of this equality means that we realize a 1-SUSY transformation of the
potential V0 with the transformation function u−

2 (x) and from the right-hand side we learn
that a similar transformation is realized of the shifted version of the same potential with the
transformation function u−

1 (x + d). Since the Darboux transformations are invertible, we
see that these transformed potentials may always be related to each other with the help of a
2-SUSY transformation for which V0 is an intermediate potential. Hence, equality (3.21)
means that after such a transformation we get only a displacement by the value d. If the
function u−

2 (x) has nodes, the 1-SUSY partner of V0(x) will have singularities (poles). To
displace V0(x) by another value we have to choose a second pair of transformation functions
u+

1 and u−
2 that give us another member of the family of 2-SUSY invariant potentials. �

Remark 2. No member of the family obtained above is a displaced copy of the initial potential
if it is not 1-SUSY invariant. Moreover, few of the potentials are displaced copies of other
members of the same family, which means that the whole set of 2-SUSY invariant potentials
is quite rich.

Indeed, if the initial potential is not 1-SUSY invariant it is not possible to displace it by
a 1-SUSY transformation. Next, any two different members of this family are related by a
2-SUSY transformation, where V0 is an intermediate potential. The factorization parameters
of such a transformation are independent of each other, which means that once a representative
of the family is fixed, Ṽ , the whole family is characterized by two independent (factorization)
parameters. The potential Ṽ , being 2-SUSY invariant, also admits 2-SUSY transformations
resulting only in a displacement, but these transformations are characterized by one parameter
only. This follows from equations (3.16) and (3.18) which may be considered as defining one
of the factorization constants (say a2) as an implicit function of the other (a1). This property
will also be illustrated in the next section and used in section 5 to produce new exactly solvable
periodic potentials.

Remark 3. The results of this section are valid not only for a periodic potential but for any
potential satisfying the conditions of proposition 1.

This follows from the fact that the only place where we used the Bloch property of solutions
of the Schrödinger equation (that is the periodicity of the potential V0(x)) is in formula (3.2).
Thus, u±

1 and u±
2 can be not only Bloch solutions, but also two pairs of linearly independent

solutions of the Schrödinger equation with a non-periodic potential.
A simple sufficient condition for (3.12) is that T = (S ′/D)2 + 4S − 2D′′/D be constant.

For example, consider the 1-SUSY invariant potential V0(x) = 2℘(x − ω′). From the
differential equation for ℘, we obtain V ′′

0 = 3V 2
0 − g2 and therefore D′′ = 3V ′′

0 (x) − 3V ′′
0 (x +

d) = 3DS. From (2.13), the 1-SUSY invariance requires (S ′/D)2 = 2S +const. Therefore, in
this case, T = (S ′/D)2 − 2S = const and, consequently, V0 is also 2-SUSY invariant, which
of course was evident from the outset.

Note that for even potentials, V0(−x) = V0(x), the expression in square brackets in (3.12)
is not defined for x = −d/2. Using Mathematica [12] we have found that in this case

lim
x→d/2

1

4

[
T ′

D − (S ′/D)′

]2

= 12(V ′
0)

3V ′′
0 + (V ′′

0 )2V ′′′
0 − V ′

0

[
(V ′′′

0 )2 + V ′′
0 V

(iv)
0

]
+ (V ′

0)
2V

(v)
0

V ′
0

[
6(V ′

0)
3 + V ′′

0 V ′′′
0 − V ′

0V
(iv)

0

]
where all the functions in the right-hand side are evaluated at x = d/2.
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4. Two-soliton potentials

In this section we illustrate our previous developments for a well-studied two-soliton potential.
In its most general form this potential is determined by four parameters:

V0(x) = 2
(
α2

1 − α2
2

)(
α2

1 sech2(α1x + β1) + α2
2 csch2(α2x + β2)

)
[α1 tanh(α1x + β1) − α2 coth(α2x + β2)]2

. (4.1)

The parameters α2 > α1 > 0 define the positions of the discrete levels E0,1 = −α2
2,1, while

β1 and β2 characterize isospectral deformations. It has been shown by direct calculation [4]
that the symmetrical case, β1 = β2 = 0, is 2-SUSY invariant. We note that exactly the same
calculations can be carried out for the general case, indicating that for any fixed values of the
parameters α1,2 and β1,2 the potential (4.1) is 2-SUSY invariant. This illustrates remark 3.
With evident modifications of the results of [4] we give the solutions u+

1 and u−
2 producing the

second-order Darboux displacement d of V0:

u±
1,2 = W(u10, u20, u30,40)W

−1(u10, u20)

where u10 = cosh(α1x + β1), u20 = sinh(α2x+β2) are solutions of the free particle Schrödinger
equation generating the potential (4.1) from the zero potential, and u30,40 = exp(α3,4x),

α3,4 > 0. When parameters α3 and α4 vary in a certain domain, independently of each other,
these functions produce an isospectral deformation of V0, resulting in the same expression
with the different values of β1 and β2. To select from these transformations only ones leading
to the shift V0(x) → V2(x) = V0(x + d) one has to impose an additional restriction on
α3 and α4. The analysis in [4] shows that to get real displacements one has to change the
factorization constants α3 and α4 so that they fall between the existing discrete levels of V0:
α1 < α3 < α4 < α2.

Let us now characterize the one-parameter family mentioned in corollary 1. For this
purpose we have to realize a 1-SUSY transformation of the potential V0 by using one of u±

1,2
as the transformation function. For simplicity let us fix β1 = β2 = 0 and choose the function
u+

1 to produce the potential V1. According to properties of Darboux transformations (see e.g.
[9]) this is equivalent to a third-order transformation of the zero potential with transformation
functions u10, u20 and u30 or simply to a chain of transformations where, for instance, the first
transformation is realized with the function u30. For such a transformation the zero potential
is not affected, but the functions u10 and u20 receive changes and, up to a constant factor,
become u10(x) → v10(x) = cosh(α1x + γ1), u20(x) → v20(x) = sinh(α2x + γ2), where

γ1 = arctanh(α1/α3) γ2 = arctanh(α2/α3). (4.2)

After the second-order transformation with the functions v10 and v20 we get from the zero
potential the same two-soliton potential (4.1) where β are replaced by γ . This is just the
one-parameter family of corollary 1 where α3 is the parameter. From definition (4.2) we see
that the parameters γ1 and γ2 are not independent of each other: tanh γ1/ tanh γ2 = α1/α2.
They vary so that the potential V1 cannot be reduced to a displaced copy of the potential
(4.1) at β1 = β2 = 0, since the later condition requires α1/α2 = γ1/γ2, which leads to
tanh γ1/ tanh γ2 = γ1/γ2. The later is possible only for γ1 = γ2 which contradicts to α1 �= α2.
Just from this, the potential V1, being of course a two-soliton potential, is essentially different
from V0, as pointed out in remark 2.

We will illustrate other properties derived in the previous section for the simplest case
of this potential. We choose α1 = 1 and α2 = 2 to produce the well-known Pöschl–Teller
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potential well

V0(x) = −6 sech2x (4.3)

for which E0 = −4 and E1 = −1.
From (3.13) we find the value of T,

T = 4[−1 + csch2d − 4 sech2x − 4 sech2(d + x)] (4.4)

which after being substituted into equation (3.18) gives the x-independent quantity

a1 + a2 = −5 − 3 csch2d. (4.5)

This means that the necessary and sufficient conditions for V0 (4.3) to be 2-SUSY invariant are
fulfilled. Now from (3.19) we obtain p(x) = −6[tanh x + csch d cosh x sech(x + d)]. From
equation (3.16) we deduce the difference of the factorization constants

a1 − a2 = ±(
3 coth d

√
1 − 3 csch2d

)
. (4.6)

From here and (4.5) one gets one factorization constant as a function of the other: a1 =
1
2

(−6 − a2 ±
√

−12a2 − 3a2
2

)
. It is clear that this equation and (4.5) define the displacement

d as a function of a2:

d = arccsch

√
−4 − a2 +

√
3
√−a2(a2 + 4)

√
6

. (4.7)

It follows from here that real displacements are possible only when both factorization constants
lie between discrete levels, −4 < a1,2 < −1, and in the above formula for a1 the lower sign is
chosen. This agrees completely with the previous result [4]. We see also that when a1 → −3,
then a2 → −3, and we get the minimal value of the displacement dmin = arccsh(1/

√
3). The

other limit is a1 → −4, which gives a2 → −1, so that the displacement increases indefinitely,
d → ∞. In this respect we remark that for one-soliton potentials the (first-order Darboux)
displacement range is always (0,∞).

We are now able to find the right-hand side of equation (3.8). It is expressed in terms of
elementary functions only and its primitive gives us a solution of the Schrödinger equation
with the potential V0:

u−
2 (x) = cosh(x + d) e− 1

2 (3coth d+
√

1−3csch2d)[3 − cosh2d + cosh 2x + cosh (2x + 2d)]1/2

× sech2x

[ √
2(coth d + 2 tanh x) sinh d +

√
cosh2d − 7

−√
2(cothd + 2 tanh x) sinh d +

√
cosh 2d − 7

]1/2

. (4.8)

The derivative of this expression yields the potential difference as a function of the parameter
d:

	V = [(4cosh x csch d sech (x + d) + tanh x)(sech2(x + d) tanh(x + d) + 2sech2x tanh x)

+ (sech2(x + d) − sech2x)(3csch2d + coth d
√

1 − 3csch2d − sech2x

− 2sech2(x + d) + 3 tanh2 x)][tanh x + csch d cosh x sech (x + d)]−2. (4.9)

Of course, this intermediate quantity can be eliminated from the final expression to obtain a
somewhat simpler formula for the family of two-soliton potentials:

V1(x) = 12[4 + 9a2 − a2
2 − 6 sech2x + 12

√
a2 tanh x − (a2 − 1)((a2 + 4) cosh 2x

+ 4
√

a2 sinh 2x)][a2 − 4 + (a2 + 2) cosh 2x + 3a2 sinh 2x]−2. (4.10)
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Figure 1. Two-soliton Pöschl–Teller potential (dashed line) and its SUSY partner at a2 = −4.1.

For the potential difference to be regular one has to choose the factorization constant a2 to be
less than the ground state level of V0, a2 < −4, which gives complex values for the parameter
d. Despite this, the potential difference is real and the solution (4.8) is also real (and nodeless)
if it is set real at any point, i.e. u−

2 (0) = 1. As an example we have plotted one of the potentials
V1 = V0 + 	V with 	V as in (4.9) in figure 1 (solid line) along with V0 (dashed line).

5. The Lamé–Ince potential

A much more interesting example of second-order Darboux displacements is given by the
following result.

Proposition 2. The periodic two-gap potential

V0(x) = 6℘(x + ω′) (5.1)

where ω′ and ω are the imaginary and real half-periods of the Weierstrass function ℘, with g2

and g3 as invariants, allows for second-order Darboux displacements. The eigenvalues a1,2

of the transformation functions producing the displacement d are given by

a1,2 = − 3
2

[
℘(d) ∓

√
g2 − 3℘2(d)

]
. (5.2)

Proof. The proof consists simply in calculating the left-hand side of equation (3.12). We
obtain first some useful relations between our variables which are direct implications of
the well-known properties of the Weierstrass functions (see e.g. [5]). From the differential
equation for ℘ one gets D′′ = SD, so T = (S ′/D)2 + 2S. The addition formula for ℘ is

℘(u + v) + ℘(u) + ℘(v) = 1

4

[
℘ ′(u) − ℘ ′(v)

℘ (u) − ℘(v)

]2

. (5.3)

By setting u = x + ω′ + d, v = −x − ω′ and noting that ℘ is even, this translates into
(S ′/D)2 = 2

3S + 4℘(d) and T = 8
3S + 4℘(d). By taking the square root of the former of these

relations and differentiating, we get

1

D

(
S ′

D

)′
= 1

3
(5.4)

and T ′ = 8S ′/3,D − (S ′/D)′ = 2D/3. Inserting these relations into (3.17) yields

p = 3(S ′/D). (5.5)

Now we are able to calculate the left-hand side of (3.12) which gives

a1 + a2 = −3℘(d). (5.6)
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This proves the first part of the statement. Now we shall find the eigenvalues of the
transformation functions. For this purpose we shall use equation (3.16). Since [℘ ′(x)]2 =
4℘3(x) − g2℘(x), we have the algebraic identity

D2 − 6
S ′D′

D
+ 3S2 = 36g2 (5.7)

and since p = 3S ′/D, inserting it and (5.6) in (3.16) and taking into account (5.7) we obtain

(a1 − a2)
2 = 9[g2 − 3℘2(d)]. (5.8)

This equality together with (5.6) proves the statement. One can check that formulae (5.6) and
(5.8), for the sum and difference of factorization constants, reduce to those for the specific
case of the two-soliton potential (4.5) and (4.6), respectively, when we take the half-periods
ω′ = iπ/2 and ω = ∞. �

Some straightforward consequences of proposition 2 are:

Corollary 2. Three of the five band edges for the potential (5.1),

E1 = 3e3 E1′ = 3e2 E2 = 3e1 (5.9)

correspond to d = ω, d = ω + ω′ and d = ω′, where

e1 = ℘(ω) e2 = ℘(ω + ω′) e3 = ℘(ω′). (5.10)

The lowest E0 = −
√

3g2 and the highest E2′ = √
3g2 band edges are stationary points for

the factorization constants a1 and a2 as functions of the displacement d.

Corollary 3. The pair of (real) factorization constants which give rise to a real displacement
by means of a second-order Darboux transformation belong to the first finite forbidden band
[E1, E1′ ]. The real displacements so produced are in the interval (dmin, dmax), where

dmin = ℘−1(√g2/3
)

dmax = ω. (5.11)

℘−1(t) is the function inverse to t = ℘(z) for which an appropriate sheet has to be chosen;
dmax = ω is realized for a2 = E1 and a1 = E1′ , while dmin is realized for a1 = a2 = −√

3g2/2.

It is interesting to note that −ek are the positions of the band edges for the one-gap potential
V0 = −2℘(x + ω′) and that in this case the range of the (first-order) Darboux displacements
is (0,∞).

Proof. The first part of corollary 2 follows immediately from proposition 2 and known
properties of the quantities ek given in [5] (vol 2), when one uses d = ω, d = ω + ω′

and d = ω′. The second one is a direct consequence of (5.2) and conditions a′
1,2(d) = 0.

Corollary 3 follows from the restriction on d to be such that g2 − 3℘2(d) be positive, since
according to proposition 2 it is inside of the square root. �

It is not difficult to see that for d = ω, the factorization constants are a2 = E1 and
a1 = E1′ . This is the only possibility for the transformed potential to be displaced by half a
real period of the Weierstrass ℘ function. The possibility for the potential (5.1) to be displaced
by a half-period was previously noted in [1, 2]. Here we indicate a possibility of displacing
the argument of the potential (5.1) by a complex value and, in particular, by half an imaginary
period. We remark that the values for the band edges are given in [2] for the Jacobi form of
the Schrödinger equation, which we relate to the Weierstrass form in appendix A.

We are now able to integrate equations (3.8)–(3.11) and find analytic expressions for the
Bloch functions, as it is established in the following proposition.
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Proposition 3. The functions

u−
2 (x) = ±√

p

(
σ(x + ω′ + d)

σ (x + ω′)

)3/2 (
σ(x − x1)

σ (x − x2)

)1/2

e(b− 3
2 ζ(d))x (5.12)

u+
2(x̃) = p(x)

u−
2 (x)

(5.13)

are the Bloch eigenfunctions for the Hamiltonian (5.1) with the eigenvalue a2, and

u−
1 (x̃) = u−

2 (x)

(
σ(x + ω′)

σ (x + ω′ + d)

)3

e3ζ(d)x (5.14)

u+
1(x) = p(x)

u−
1 (x̃)

(5.15)

are the Bloch eigenfunctions with the eigenvalue a1. Here σ and ζ are standard Weierstrass
functions,

x1 = ℘−1

(
− 1

2℘0 + 1
2

√
g2 − 3℘2

0

)
− ω′

(5.16)

x2 = ℘−1

(
− 1

2℘0 − 1
2

√
g2 − 3℘2

0

)
− ω′

℘0 = ℘(d), ℘−1 is the function inverse to ℘ and

b = 1
2ζ(ω′ − x2) − 1

2ζ(ω′ − x1). (5.17)

The proof can be found in appendix B.

Remark 4. The solutions given in (5.12) and (5.13) are valid for any eigenvalue a2. By using
(5.2) one can find a1 as a function of a2:

a1 =
−a2 ±

√
9g2 − 3a2

2

2
. (5.18)

Then with the aid of (5.6) d is expressed in terms of a2 also. Hence, the Bloch functions
(5.12) and (5.13) are determined only by the eigenvalue a2 which can take any value and, thus,
these functions generate the one-parameter family of 2-SUSY invariant potentials mentioned
in corollary 1. With appropriate modifications the same is true for the functions (5.14) and
(5.15).

To illustrate this remark we prove:

Proposition 4. The potentials

V1(x) = V0(x) + 	V (x) V0(x) = 6℘(x + ω′) (5.19)

where

	V (x) = − [℘(x + ω′ + d) + ℘(x + ω′)]2 + 2℘(x + ω′ + d)℘ (x + ω′) − g2/2

℘(x + ω′ + d) + ℘(x + ω′) + ℘(d)

+ 3℘(x + ω′ + d) − 3℘(x + ω′) − ℘(x − x1) + ℘(x − x2) (5.20)

d = ℘−1
( − a1+a2

3

)
, x1, x2 are defined as in (5.16), and a1 in (5.18), form a one-parameter

family of real-valued two-gap potentials isospectral with V0. The role of the parameter is
played by a2 � E0, where E0 = −√

3g2 is the lowest band edge for V0.
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(a) (b)

Figure 2. (a) Lamé–Ince potential (solid line) at ω = 1 and ω′ = 2i and its SUSY partners. Dotted
line corresponds to a2 = −5 and dashed line to a2 = −6; (b) illustrates that the left-hand side of
equation (2.13) is not constant for d = 1.3.

Figure 3. Potential corresponding to the transformation function u = u−
2 + 0.5u+

2 at ω = 1 and
ω′ = 2i and a2 = −5.2 (solid line). Dashed line shows the initial Lamé–Ince potential.

Proof. The proof consists simply in calculating the right-hand side of equation (3.8) and
taking its derivative which will give us the potential difference (see (2.4)). Using expression
(B.2) below for p in terms of the Weierstrass ζ function and the addition formula (5.3) we first
get

1

2
(log p)′ = (℘ − ℘̃)2

℘ ′ + ℘̃ ′ (5.21)

where ℘ ≡ ℘(x + ω′) and ℘̃ ≡ ℘(x + ω′ + d). To derive the final expression (5.20)
we have used the formula (B.8) and the following properties of the Weierstrass functions:
(℘ ′)2 = 4℘3 − g2℘ − g3, ℘

′′ = 6℘2 − g2/2 and ζ ′(x) = −℘(x). The fact that these
potentials have two-gaps follows from the fact that Darboux transformations preserve band
structure (see e.g. [11]). �

It is interesting to observe that different representatives of this family look like displaced
copies of the initial potential (see figure 2(a)) though V0 is not 1-SUSY invariant which is
clearly seen from figure 2(b), where the left-hand side of equation (2.13) is plotted.

Figure 3 shows a non-periodic potential obtained when a linear combination of the
functions (5.12) and (5.13) is chosen as the transformation function. We stress that it possesses
an energy level at −5.2 and the solution of the corresponding Schrödinger equation can easily
be obtained by applying the first-order Darboux transformation operator (2.5) to the functions
(5.12)–(5.15). We would also like to mention that the transformed potential tends to a displaced
version of the initial potential at large values of |x|. This effect, first noted in [3], illustrates a
nonlocal deformation produced by a Darboux transformation.
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Finally, we would like to point out that the function (5.12) acquires a constant factor when
its argument increases by the period 2ω. This can be seen from properties of the Weierstrass
σ functions [5] that lead to

u−
2 (x + 2ω) = u−

2 (x) exp[ζ(ω)(3d + x2 − x1) − ω(3ζ(d) − 2b)].

From here it follows, in particular, that for a2 = 3e3, a1 = 3e2, one has d = ω, x1 = ω and
x2 = −2ω′ which results in the condition u−

2 (x + 2ω) = u−
2 (x) exp[2ζ(ω′)ω − 2ω′ζ(ω)] =

−u−
2 (x), where we have used the Legendre relation [5]. This result agrees with the fact that

this function corresponds to the second band edge.
In conclusion, we have characterized and investigated the interesting class of periodic

potentials which are merely translated by a second-order Darboux transformation. We have
presented several examples, concentrating on the fascinating family of two-gap Lamé–Ince
potentials. The nonlinear differential equation which must be satisfied by all such potentials,
which may be related to the class of Painlevé equations, deserves further investigation.
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Appendix A

Here, to fix our notation, we relate the Weierstrass form of the Schrödinger equation to its
Lamé form (see also [5], vol 3). According to [5] one has

sn2(z, k) = e1 − e3

℘(x) − e3
℘(x + ω′) = e3 +

(e3 − e2)(e3 − e1)

℘ (x) − e3
(A.1)

or

℘(x + ω′) = e3 + (e2 − e3)sn2(z, k) (A.2)

where

k2 ≡ m = e2 − e3

e1 − e3
z = (e1 − e3)

1/2x. (A.3)

Now, after replacing the variable x by z in the Schrödinger equation with the potential (5.1),
one gets [

− d2

dz2
+ (6k2sn2(z, k) − Ẽ)

]
ψ = 0 (A.4)

where

Ẽ = E − 6e3

e1 − e3
= E

e1 − e3
+ 2m + 2. (A.5)

Using this relation and corollary 2 one recovers the known band edges for the Lamé equation
(see e.g. [2]),

Ẽ0 = E0 − 6e3

e1 − e3
= 2m + 2 − 2δ

Ẽ1 = m + 1 Ẽ1′ = 4m + 1 (A.6)

Ẽ2 = m + 4 Ẽ2′ = 2m + 2 + 2δ.
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Appendix B

In this appendix we prove proposition 3. In our notation the addition theorem for the
Weierstrass ζ -function (see [5])

1

2

℘ ′(x + d) + ℘ ′(x)

℘ (x + d) − ℘(x)
= ζ(x) − ζ(x + d) + ζ(d) (B.1)

becomes
1

2

S ′

D
= ζ(x + ω′ + d) − ζ(x + ω′) − ζ(d).

Hence

p = 3
S ′

D
= 6[ζ(x + ω′ + d) − ζ(x + ω′) − ζ(d)]. (B.2)

Recalling that

p2 = 9

(
S ′

D

)2

= 6S + 36℘(d) (B.3)

we find

S = 6[℘(x + ω′) + ℘(x + ω′ + d)]. (B.4)

Let us find now the expression for 1/p.
The function S has second-order poles at the same points as ℘(x + ω′) and ℘(x + ω′ + d),

that is at x = −ω′ and x = −ω′ − d. This means that S is a second-order elliptic function
and has two second-order zeros. Here and below, for simplicity, we suppose that d falls in the
interval (dmin, dmax) indicated in corollary 3.

Let us denote

f (x) := ℘(x + ω′) + ℘(x + ω′ + d) + ℘(d). (B.5)

Then p2 = 36f � 0 for real values of ℘. Note that for d = ω, f (0) = f (ω) = e1 + e2 +
e3 = 0. Hence, x = 0 and x = ω are the points of local minima for f (x). Therefore
f ′(0) = f ′(ω) = 0, i.e. the zeros are of second order. Next, it is easy to see that
f ′(ω/2) = f ′(3ω/2) = 0 and the points x = ω/2 and x = 3ω/2 are the points of local
maxima for real valued f (x). We find now the positions of these zeros.

Let x0 be a minimum (or a zero-point) for f (x), that is f (x0) = 0 and f ′(x0) = 0. Let
us abbreviate the notation by putting

℘ := ℘(x0 + ω′) ℘̃ := ℘(x0 + ω′ + d) ℘0 := ℘(d).

Then ℘ + ℘̃ + ℘0 = 0 and ℘ ′ + ℘̃ ′ = 0 (with the evident notation ℘ ′ = ℘ ′(x0), . . .). Or else
℘ ′2 − ℘̃ ′2 = 0. Using the differential equation for ℘,℘ ′2 = 4℘3 − g2℘ − g3, one finds from
here that

(℘ − ℘̃)(4℘2 + 4℘̃2 + 4℘℘̃ − g2) = 0.

Since ℘ �= ℘̃ this implies that

0 = 4℘2 + 4℘̃2 + 4℘℘̃ − g2 = 4℘2 + 4℘2
0 + 4℘℘0 − g2

and

℘(x0 + ω′) = − 1
2℘0 ± 1

2

√
g2 − 3℘2

0 . (B.6)

Hence, the positions x1 and x2 of the zeros of f (x) are given by (5.16). In using these formulae
it is necessary to keep in mind that ℘ is a multisheet function. Note that for d = ω one gets
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x2 = 0 and x1 = ω since
√

g2 − 3℘2
0 = e2 − e3, ℘

−1(e3) = ω′, ℘−1(e2) = ω + ω′. Note also
that since the equation ℘(z) = A defines z up to a sign and up to the periods, either the sum
or the difference of x1 and x2 modulo periods is equal to −d.

The function p(x) = ±6
√

f (x) has simple zeros x1 and x2 and simple poles 1/p(x). It
is not difficult to find the residues of 1/p(x) at these points

Res
x=x1

1

p(x)
= −Res

x=x2

1

p(x)
= 1

6
√

g2 − 3℘2
0

. (B.7)

This implies that the residues of (a1 − a2)/p at the points x1,2 are ±1/2.
Now, using the known [5] decomposition of an elliptic function in terms of ζ functions

one finds
a1 − a2

p
= 1

2
ζ(x − x1) − 1

2
ζ(x − x2) + b. (B.8)

The constant b here may be calculated by the same formula at x = ω′ where 1/p = 0. This
gives (5.17).

Using the fact that σ ′(z)
σ (z)

= ζ(z) one obtains

a1 − a2

p
= 1

2

[
log

σ(x − x1)

σ (x − x2)

]′
+ b (B.9)

and from (B.2) one finds

p = 6

[
log

σ(x + ω′ + d)

σ (x + ω′)

]′
− 6ζ(d). (B.10)

With the help of the last two relations one gets from (3.8)

[ log u−
2 (x)]′ = 1

2
[log p]′ +

1

4
p +

a1 − a2

p

= 1

2
[log p]′ +

3

2

[
log

σ(x + ω′ + d)

σ (x + ω′)

]′
− 3

2
ζ(d) +

1

2

[
log

σ(x − x1)

σ (x − x2)

]′
+ b.

(B.11)

It follows from here that (5.12) is a quadrature of the above formula. Similarly, formulae
(5.13)–(5.15) follow from (5.12) and (3.9)–(3.11), and the proposition is proved.
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